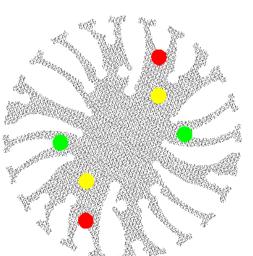


EtraLED-LUME-4850 Lumens Modular Passive Star LED Heat Sink Φ48mm


Features VS Benefits

- * The EtraLED-LUME-4850 Lumens Pin Fin LED Heat Sinks are specifically designed for luminaires using the Lumens LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 400 to 1,500 lumen.
- * Thermal resistance range Rth 5.0°C/W.
- * Modular design with mounting holes foreseen for direct mounting of Lumens Ergon COB series, and AC-ALL series LED engines.
- * Diameter 48.0mm standard height 50.0mm Other heights on request.
- * Forged from highly conductive aluminum.

Zhaga LED engine and radiator assembly is a unified future international standardization

- * Below you find an overview of Lumens COB's and LED modules which standard fit on the srar LED heat sinks.
- * In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of srar LED heat sinks.

Lumens LED Modules directly Mounting Options Lumens Ergon COB_HO, COB_HO+, COB_HE Series :

Without the holders for the green indicator marks.

Direct mounting with machine screws M3x6.5mm

Lumens Ergon COB_HO, COB_HO+, COB_HE Series :

With the Zhaga Book 11 holders for the green indicator marks.

IDEAL Holder:50-2001CR; BJB Holder:47.319.6104.50;

Direct mounting with machine screws M3x6.5mm

Lumens AC-ALL Series :

EDC/47C/10W/xxx/120V/B; EDC/47C/12W/xxx/120V/B; EDC/47C/10W/xxx/230V/A; EDC/47C/12W/xxx/230V/A;

With the Zhaga Book 3 holders for the red indicator marks. Direct mounting with machine screws M3x6.5mm

Please refer to the www.lumensleds.com data provided on the manual.

Mounting Options and Drawings & Dimensions

Example: EtraLED-LUME-4850-B-1,2

Example:EtraLED-LUME-48 1 - 2 -

Height (mm)

Height (mm

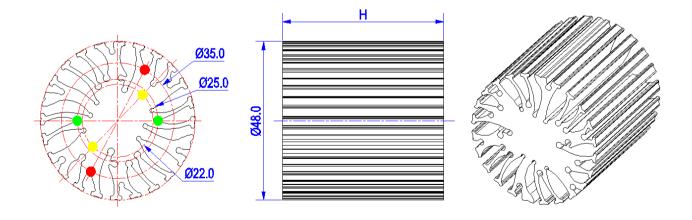
Anodising Color

B-Black

C-Clear

Z-Custom

Mounting Options - see graphics for details Combinations available

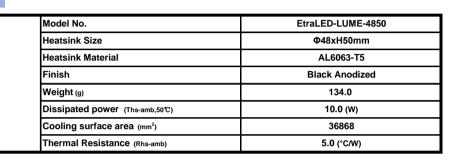

Ex.order code - 12

means option 1 and 2 combined

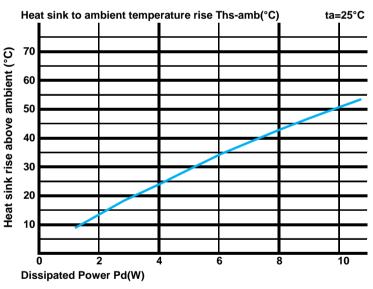
Notes:

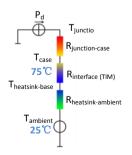
- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications without prior notice.

MOUNTING OPTION	Module type	Holder NO.	THREAD	THREAD DEPTH	THREAD HOLE DISTANCE
1	Ergon COB (15.85×15.85)	1	М3	6.5mm	22.0mm/ 2-@180°
2	Ergon COB (17.85×17.85)	1		6.5mm	25.0mm/ 2-@180° (Zhaga book 11)
	Ergon COB (15.85×15.85)	BJB Holder 47.319.6104.50	МЗ		
		ldeal Holder 50-2001CR			
3	AC-ALL Series	Lumens		6.5mm	35.0mm/ 2-@180° (Zhaga book 3)
	Ergon COB (17.85×17.85)	BJB Holder 47.319.2131.50	М3		
		ldeal Holder 50-2101CR			



The product deta table


EtraLED


The thermal data table

- * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe \times (I \eta L)$.
 - Pd Dissipated power ; Pe Electrical power ; $\eta L =$ Light effciency of the LED module;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)	
		EtraLED-LUME-4850		
Dissipated Power Pd(W)	2.0	6.50	13.0	
	4.0	6.00	24.0	
	6.0	5.67	34.0	
	8.0	5.38	43.0	
	10.0	5.00	50.0	

- *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).
- $\label{thm:mingFar} \mbox{MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.}$
- $Either thermal\ grease, A\ thermal\ pad\ or\ a\ phase\ change\ thermal\ pad\ thickness\ 0.1-0.15 mm\ is\ recommended.$

- *Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths Ta)/Pd$
- θ Thermal Resistance [°C/M]; Ths Heatsink temperature; Ta Ambient temperature;
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{junction-case}$, the thermal resistance of the TIM outside the package is $R_{interface}(TIM)$ ["C,M"], the thermal resistance with the heat sink is $R_{heatsink-ambient}$ ["C,M"], and the ambient temperature is $T_{ambient}$ ["C].
- *Thermal resistances outside the package $R_{interface \, (TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used: $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$

Tel:+86-769-39023131
Fax:+86-(020)28819702 ext:22122
Email:sales@mingfatech.com
Http://www.heatsinkled.com
Http://www.mingfatech.com

