

GooLED-OSR-11080 Pin Fin Heat Sink Φ110mm for Osram

Features VS Benefits

- * The GooLED-OSR-11080 Osram Pin Fin LED Heat Sinks are specifically designed for luminaires using the Osram LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 2,500 to 7,000 lumen.
- * Thermal resistance range Rth 1.14°C/W.
- * Modular design with mounting holes foreseen for direct mounting of Osram LED engines.
- * Diameter 110mm standard height 80mm, Other heights on request.
- * Forged from highly conductive aluminum.

Zhaga LED engine and radiator assembly is a unified future international standardization

- * Below you find an overview of Osram COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks.
- * In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of LED Pin Fin LED Heat Sink.

Osram LED Modules directly Mounting Options Osram SOLERIQ® S 19 COB LED modules name:

GW KAHLxx.xx;

With the Zhaga Book 3 Holders:

BJB holder:47.319.2170.50;

TE LED Holder:2213407-1;

Direct mounting with machine screws M3x6.5mm, green indicator marks.

With the LEDiL products:

Stella Series: FN13xxx-xx; FN14xxx-xx; FN15xxx-xx; Stella Series mounting hole for the pink indicator marks Lenins series: CN14xxx; CN13xxx; CN12xxx;

Osram PrevaLED Core Z5, Z6, Style, Z7 L15 H1 and AC PRO LED modules name:

PL-CORE-Z5 -3000-xxx; PL-CORE-G7 3000-xxx L15 H1;
PL-CORE-Z5 -5000-xxx; PL-CORE-G7 5000-xxx L15 H1;
PL-CORE-Z6 -3000-xxx; PL-CORE AC PRO -2000-xxx;
PL-CORE-Z4 -3000-S32;

Wish the Zhana Daala Oatandan

Direct mounting with machine screws M3x6.5mm, green indicator marks.

Osram PrevaLED Core Z6 Mini LED modules name:

PL-CORE-Z6-MINI -2000-xxx PL-CORE-Z6-MINI -3000-xxx

With the Zhaga Book 11 standard

Direct mounting with machine screws M3x6.5mm, Blue indicator marks.

GOOLED

GooLED-OSR-11080 Pin Fin Heat Sink Φ110mm for Osram

Mounting Options and Drawings & Dimensions

Example:GooLED-OSR-11080-B-1,2

Example:GooLED-OSR-110 1 - 2 - 3

1 Height (mm)

Anodising Color

B-Black

C-Clear

Z-Custom

Mounting Options - see graphics for details Combinations available

Ex.order code - 12

means option 1 and 2 combined

Notes:

- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications without prior notice.

MOUNTING OPTION	Module type	Holder NO.	LEDiL products			THREAD	THREAD	THREAD HOLE
			Stella Series	Lenina series	Ronda series	INCEAD	DEPTH	DISTANCE
N	/	None	None	None	None	None	None	None
1	Z6 Mini	/		/	/	M3	6.5mm	25.0mm/ 2-@180° (Zhaga book 11)
2	Z5; Z6; Style; Z7 L15 H1; AC PRO;	/	1			МЗ	6.5mm	35.0mm/ 2-@180° (Zhaga book 3)
	SOLERIQ® S 19	BJB Holder 47.319.2170.50	FN13xxx-xx; FN14xxx-xx; FN15xxx-xx;	CN14xxx; CN13xxx; CN12xxx;	/			
		TE Holder 2213407-1						
3	LEDiL Lens	/	Stella Series	/	/	M4	8.5mm	75.0mm/ 4-@90°

The product deta table

The thermal data table

- * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe \times (I \eta L)$.
 - Pd Dissipated power ; Pe Electrical power ; $\eta L = \text{Light effciency of the LED module};$

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)		
		GooLED-OSR-11080			
(W)	12.0	1.67	20.0		
er Pd(24.0	1.38	33.0		
Dissipated Power Pd(W)	36.0	1.17	42.0		
	48.0	1.10	53.0		
	60.0	1.03	62.0		

- *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).
- $\label{thm:mingFa} \mbox{MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.}$

 $Either thermal\ grease, A\ thermal\ pad\ or\ a\ phase\ change\ thermal\ pad\ thickness\ 0.\ I-0.\ I\ 5mm\ is\ recommended.$

- *Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths Ta)/Pd$
- $\theta\,$ Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ;
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{\text{junction-case}}$, the thermal resistance of the TIM outside the package is $R_{\text{interface}}$ (TIM), [°C/M], the thermal resistance with the heat sink is $R_{\text{heatsink-ambient}}$ [°C/M], and the ambient temperature is T_{ambient} [°C/].
- *Thermal resistances outside the package $R_{interface \, (TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used:
- $T_{junction} = (R_{junction\text{-}case} + R_{case\text{-}ambient}) \cdot Pd + T_{ambient}$

