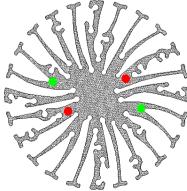


EtraLED EtraLED-NIC-7080 Nichia Modular Passive Star LED Heat Sink Ø70mm

Features VS Benefits

- * The EtraLED-NIC-7080 Nichia Passive Star LED Heat Sinks are specifically designed for luminaires using the Nichia LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 1400 to 3,600 lumen.
- * Thermal resistance range Rth 2.08°C/W.
- * Modular design with mounting holes foreseen for direct mounting of Nichia COB series.
- * Diameter 70.0mm standard height 80.0mm, Other heights on request.
- * Forged from highly conductive aluminum.
- Zhaga LED engine and radiator assembly is a unified future international standardization
- * Below you find an overview of Nichia COB's and LED modules which standard fit on the srar LED heat sinks.
- * In this way mechanical after work and related costs can be avoided, and lighting designers
- can standardize their designs on a limited number of srar LED heat sinks.


NFCWL036B; NFCLL036B; NFCWL060B; NFCLL060B;

With the Zhaga Book 3 Holders: Ideal Holder:50-2100NC; TE LED Holder:2213382-2; Direct mounting with machine screws M3x6.5mm, Green indicator marks. With the LEDiL products: Lena series: CN14xxx; C13xxx; C12xxx; Ronda series: EN15xxx-xx;

Nichia COB LED modules name:

NVCWL024Z; NVCLL024Z; NVNWS007Z; NJCWS024Z;

With the Zhaga Book 11 Holders: BJB holder:47.319.6180.50; TE LED Holder:2213118-1; Direct mounting with machine screws M3x8mm, Red indicator marks. With the LEDiL products: Lena series: CN14xxx; C13xxx; C12xxx; Ronda series: FN15xxx-xx;

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

EtraLED EtraLED-NIC-7080 Nichia Modular Passive Star LED Heat Sink ϕ 70mm

Mounting Options and Drawings & Dimensions

3

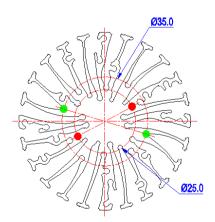
Example:EtraLED-NIC-7080-B-1,2 Example:EtraLED-NIC-70 1 - 2 -Height (mm) Anodising Color B-Black C-Clear

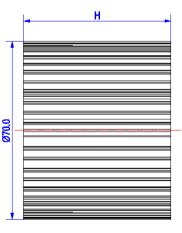
Z-Custom

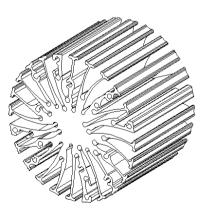
Ex.order code - 12

Notes:

- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.


means option 1 and 2 combined


details Combinations available


Mounting Options - see graphics for

MingfaTech reserves the right to change products or specifications without prior notice.

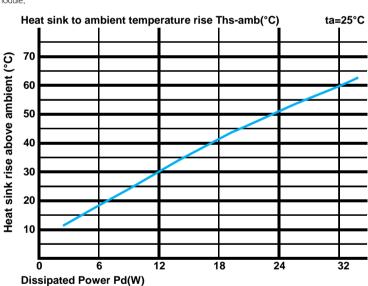
MOUNTING OPTION	Module type	Holder NO.	LEDiL products		THREAD	THREAD	THREAD HOLE
			Lena series	Ronda series	INKEAD	DEPTH	DISTANCE
Ν	/	None	None	None	None	None	None
1	NVCWL024Z; NVCLL024Z; NVNWS007Z; NJCWS024Z;	BJB Holder 47.319.6180.50	CN14xxx; C13xxx; C12xxx;	FN15xxx-xx	M3	6.5mm	25.0mm/ 2-@180° (Zhaga book 11)
		TE Holder 2213118-1					
2	NFCWL036B; NFCLL036B; NFCWL060B; NFCLL060B;	ldeal Holder 50-2100NC			M3	6.5mm	35.0mm/ 2-@180° (Zhaga book 3)
		TE Holder 2213382-2					

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

EtraLED EtraLED-NIC-7080 Nichia Modular Passive Star LED Heat Sink Ø70mm

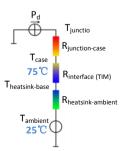
The product deta table

EtraLED	Model No.	EtraLED-NIC-7080	
45 H H H H H H H H	Heatsink Size	Φ70xH80mm	
	Heatsink Material	AL6063-T5	
F 23 A ST	Finish	Black Anodized	
	Weight (g)	192.0	
	Dissipated power (Ths-amb,50℃)	24.0 (W)	
	Cooling surface area (mm²)	124837	
. and Line.	Thermal Resistance (Rhs-amb)	2.08 (°C/W)	


The thermal data table

* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.

*To calculate the dissipated power please use the following formula: $Pd = Pe \times (1 - \eta L)$.


Pd - Dissipated power ; Pe - Electrical power ; ηL = Light effciency of the LED module;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)	
		EtraLED-NIC-7080		
Dissipated Power Pd(W)	6.0	3.00	18.0	
	12.0	2.50	30.0	
	18.0	2.28	41.0	
	24.0	2.08	50.0	
	32.0	1.84	59.0	

*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.

Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\mathbf{\theta} = (\text{Ths} - \text{Ta})/\text{Pd}$

 $\theta\,$ - Thermal Resistance [°C/W] ; $\,$ Ths - Heatsink temperature ; $\,$ Ta - Ambient temperature ;

*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{junction-case}$, the thermal resistance of the TIM outside the package is $R_{interface (TIM)}$ [°C/W], the thermal resistance with the heat sink is $R_{heatsink-ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C/].

*Thermal resistances outside the package $R_{interface (TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used: $T_{junction}=(R_{yunction-case}+R_{case-ambient})\cdot Pd+T_{ambient}$

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

