## **Features VS Benefits** - \* Mechanical compatibility with direct mounting of the LED modules to the LED cooler and thermal performance matching the lumen packages. - \* For spotlight and downlight designs from 1,500 to 4,000 lumen. - \* Thermal resistance range Rth 1.85°C/W. - \* Modular design with mounting holes foreseen for direct mounting of a wide range of LED modules and COB's: - \* Diameter 78.0mm Standard height 90.0mm , Other heights on request. - \* Forged from highly conductive aluminum. - \* 2 standard colors clear anodised black anodised. - \* Zhaga Book 3 Spot Light modules: Bridgelux ,Cree ,Citizen ,Edison ,GE lighting, LG Innotek ,Lumileds ,Lumens ,Luminus ,Nichia ,Osram ,Philips ,Prolight Opto, Samsung ,Seoul ,Tridonic ,Vossloh-Schwabe ,Xicato. - 01) Bridelux: Vero 18/22 Vero SE 18/29 LED engines; - 02) Cree: XLamp CXA 25xx, Xlamp CXB 25xx, CXA 30xx, Xlamp CXB 30xx LED eng - 03) Citizen: CLU036, CLU038, CLU721, CLU711, CLU046, CLU048, CLU731 LED engines; - 04) Edison: EdiLex III COB LED engines; - 05) GE lighting: Infusion™ LED engines; - 06) LG Innotek: 32W, 42W, 56W LED engines; - 07) LumiLEDS: LUXEON 1211, LUXEON 1216, LUXEON 1812, LUXEON 1825 LED eng - 08) Lumens: Ergon-COB-2530, 2540, 3050, 3070 LED engines; - 09) Luminus: CXM-18, CLM-22, CXM-22 LED engines; - 10) Nichia: NFCWL036B, NFCLL036B, NFCWL060B, NFCLL060B LED engines; - 11) Osram: SOLERIQ® S 19, Core series LED engines; - 12) Philips: Fortimo SLM LED engines; - 16) Prolight Opto: PABS, PABA, PACB, PANA LED engines; - 13) Samsung: LC026B, LC033B, LC040B, LC040D, LC060D, LC080D LED engines; - 14) Seoul Semiconductor: Acrich MJT COBs, DC COB LED engines; - 15) Tridonic: SLE G6 19mm, SLE G6 23mm LED engines; - 17) Vossloh-Schwabe: LUGA Shop and LUGA C LED engines; - 18) Xicato: XSM, XIM,XTM LED engines; # **Order Information** Example:GooLED-7890-B Example:GooLED-7890- C-Clear Z-Custom ### **Notes:** - Mentioned models are an extraction of full product range. - For specific mechanical adaptations please contact MingfaTech. - MingfaTech reserves the right to change products or specifications without prior notice. Tel: +86-769-39023131 E-fax: +86-(020)28819702 ext22122 Http://www.heatsinkled.com Http://www.mingfatech.com # The product deta table #### The thermal data table - \* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module. - \*To calculate the dissipated power please use the following formula: $Pd = Pe \times (1 \eta L)$ . - Pd Dissipated power; Pe Electrical power; $\eta L = \text{Light effciency of the LED module}$ ; | Pd = Pe x<br>(1-ηL) | | Heat sink to ambient<br>thermal resistance<br>Rhs-amb (°C/W) | Heat sink to ambient<br>temperature rise<br>Ths-amb (°C) | |------------------------|------|--------------------------------------------------------------|----------------------------------------------------------| | | | GooLED-7890 | | | Dissipated Power Pd(W) | 7.0 | 2.50 | 17.5 | | | 14.0 | 2.14 | 30.0 | | | 21.0 | 1.95 | 41.0 | | | 28.0 | 1.86 | 52.0 | | | 35.0 | 1.74 | 61.0 | - \*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler. - Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended. - \*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths - Ta)/Pd$ - $\theta$ Thermal Resistance [°C/W]; Ths Heatsink temperature; Ta Ambient temperature; - \*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{\text{function-case}}$ , the thermal resistance of the TIM outside the package is $R_{\text{interface}}$ (TIM) ["CM], the thermal resistance with the heat sink is $R_{heatsink-ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C]. - \*Thermal resistances outside the package $R_{interface \, (TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used: $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$ Tel: +86-769-39023131 E-fax: +86-(020)28819702 ext22122 Http://www.heatsinkled.com Http://www.mingfatech.com