

Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

Example:GooLED-TRI-			
1	Height (mm)		
2	Anodising Color		
	B-Black		
	C-Clear		
	Z-Custom		

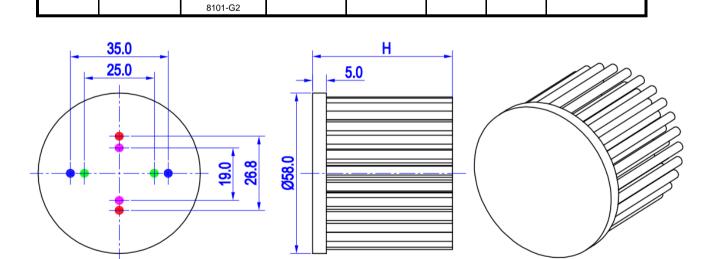
Notes:

AAG.STUCCHI

- Mentioned models are an extraction of full product range.

- For specific mechanical adaptations please contact MingfaTech.

means option 1 and 2 combined


details Combinations available

Ex.order code - 12

Mounting Options - see graphics for

Poil specific mechanical adaptations please contact minigrament.
MingfaTech reserves the right to change products or specifications without prior notice.

					.g. p		
MOUNTING OPTION Module type	Modulo typo	Holder NO.	LEDiL products		THREAD	THREAD	THREAD HOLE
	wodule type		Olivia Series	Ronda series	INKEAD	DEPTH	DISTANCE
1	SLE G6 10mm;	/			M3	6.5mm	19.0mm/ 2-@180°
2		BJB Holder 47.319.6020.50	/		M3	6.5mm	25.0mm/ 2-@180° (Zhaga book 11)
3		/		FN15xxx-xx;	M3	6.5mm	26.8mm/ 2-@180°
4	SLE G6 15mm; SLE G6 17mm;	BJB Holder 47.319.2021.50	FN14637-S; FN14828-M;		M3	6.5mm	35.0mm/ 2-@180°

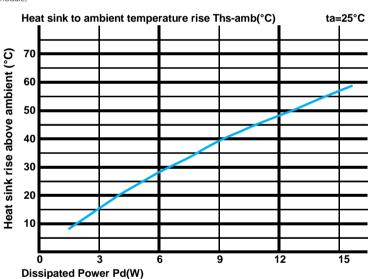
Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

(Zhaga book 3)

GooLED-TRI-5850 Pin Fin Heat Sink Φ58mm for Tridonic

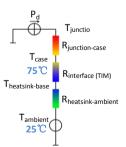
The product deta table

GooLED	Model No.	GooLED-TRI-5850
	Heatsink Size	Ф58хН50mm
	Heatsink Material	AL1070
	Finish	Black Anodized
	Weight (g)	108.0
	Dissipated power (Ths-amb,50°C)	13.0 (W)
	Cooling surface area (mm ²)	36775
	Thermal Resistance (Rhs-amb)	3.85 (°C/W)


The thermal data table

* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.

*To calculate the dissipated power please use the following formula: $Pd = Pe \times (I - \eta L)$.


Pd - Dissipated power ; Pe - Electrical power ; ηL = Light effciency of the LED module;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)
		GooLED-TRI-5850	
(M)	3.0	5.00	15.0
er Pd(6.0	4.67	28.0
d Pow	9.0	4.33	39.0
Dissipated Power Pd(W)	12.0	4.00	48.0
	15.0	3.80	57.0

*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.

Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths - Ta)/Pd$

heta - Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ;

*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is R_{junction-case}, the thermal resistance of the TIM outside the package is R_{interface (TIM)} [°C/W], the thermal resistance with the heat sink is $R_{heatsink-ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C].

*Thermal resistances outside the package $R_{\text{interface (TIM)}}$ and $R_{\text{heatsink-ambient}}$ can be integrated into the thermal resistance $R_{\text{case-ambient}}$ at this point. Thus, the following formula is also used: $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

