

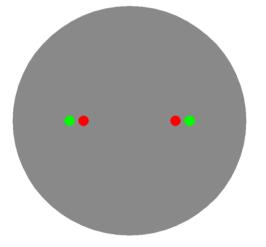


# xLED-LUN-7050 Pin Fin LED Heat Sink Φ70mm for Luminus

## **Features VS Benefits**

- \* The xLED-LUN-7050 Luminus Pin Fin LED Heat Sinks are specifically designed for luminaires using the Luminus LED engines.
- \* Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- \* For spotlight and downlight designs from 1,000 to 2,600 lumen.
- \* Thermal resistance range Rth 3.13°C/W.
- \* Modular design with mounting holes foreseen for direct mounting of Luminus COB series.
- \* Diameter 70mm standard height 50mm, Other heights on request.
- \* Forged from highly conductive aluminum.

### Zhaga LED engine and radiator assembly is a unified future international standardization


- \* Below you find an overview of Luminus COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks.
- \* In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of LED Pin Fin LED Heat Sink.











# **Luminus LED Modules directly Mounting Options**

Luminus COB series.

CIM/CLM/CXM-14;

With the Zhaga Book 3 holders for the green indicator marks.

Without the holders for the red indicator marks.

Direct mounting with machine screws M3x6.5mm

With the LEDiL products:

#### Luminus COB series.

CXM-18;

With the Zhaga Book 3 holders for the green indicator marks.

BJB Holder:47.319.2280.50; Direct mounting with machine screws M3x6.5mm.

With the LEDiL products: Lena series: CN12xxx;





XLED

xLED-LUN-7050 Pin Fin LED Heat Sink Ф70mm for Luminus

# **Mounting Options and Drawings & Dimensions**

Example:xLED-LUN-7050-B-1,2

Example:xLED-LUN-70 1

Height (mm)

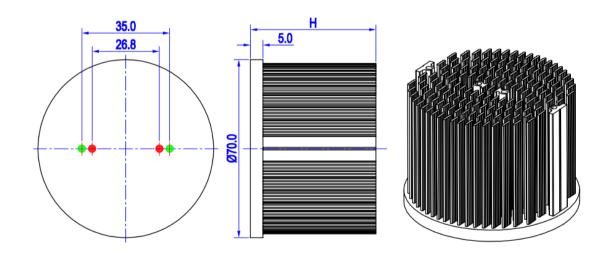
**Anodising Color** 

B-Black

C-Clear

**Z-Custom** 

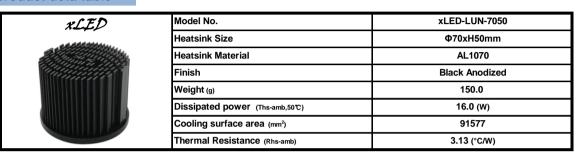
Mounting Options - see graphics for details Combinations available


Ex.order code - 12

means option 1 and 2 combined

## Notes:

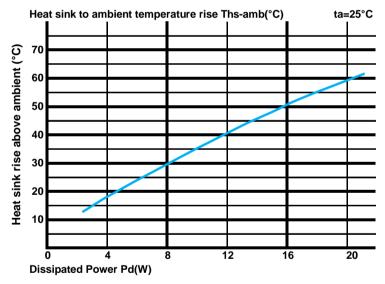
- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications without prior notice.


| MOUNTING<br>OPTION | Module type               | Holder NO.                   | LEDiL products      |             | THREAD | THREAD | THREAD HOLE                       |
|--------------------|---------------------------|------------------------------|---------------------|-------------|--------|--------|-----------------------------------|
|                    |                           |                              | Lenina Series       | Lena series | INCEAD | DEPTH  | DISTANCE                          |
| 1                  | CXM-11;<br>CIM/CLM/CXM-14 | /                            | CN12xxx;<br>C12xxx; | CN12xxx;    | М3     | 6.5mm  | 26.8mm/ 2-@180°                   |
| 2                  |                           | BJB Holder<br>47.319.2021.50 |                     |             | МЗ     | 6.5mm  | 35.0mm/ 2-@180°<br>(Zhaga book 3) |
|                    |                           | TE Holder<br>2213254-1       |                     |             |        |        |                                   |
|                    | CXM-18;                   | BJB Holder<br>47.319.2280.50 | /                   |             |        |        |                                   |
|                    |                           | TE Holder<br>2213258-1       |                     |             |        |        |                                   |



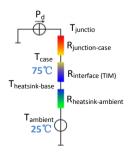





# The product deta table



## The thermal data table


- \* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- \*To calculate the dissipated power please use the following formula:  $Pd = Pe \times (I \eta L)$ .
  - Pd Dissipated power ; Pe Electrical power ;  $\eta L = \text{Light effciency of the LED module};$

| Pd = Pe x<br>(1-ηL)    |      | Heat sink to ambient thermal resistance Rhs-amb (°C/W) | Heat sink to ambient<br>temperature rise<br>Ths-amb (°C) |  |  |
|------------------------|------|--------------------------------------------------------|----------------------------------------------------------|--|--|
|                        |      | xLED-LUN-7050                                          |                                                          |  |  |
| Dissipated Power Pd(W) | 4.0  | 4.25                                                   | 17.0                                                     |  |  |
|                        | 8.0  | 3.63                                                   | 29.0                                                     |  |  |
|                        | 12.0 | 3.33                                                   | 40.0                                                     |  |  |
|                        | 16.0 | 3.13                                                   | 50.0                                                     |  |  |
|                        | 20.0 | 2.95                                                   | 59.0                                                     |  |  |



- \*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).
- $\label{thm:mingFa} \mbox{MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.}$

 $Either thermal\ grease, A\ thermal\ pad\ or\ a\ phase\ change\ thermal\ pad\ thickness\ 0.\ I-0.\ I\ 5mm\ is\ recommended.$ 



- \*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula:  $\theta = (Ths Ta)/Pd$
- $oldsymbol{ heta}$  Thermal Resistance [°C/W] ; Ths Heatsink temperature ; Ta Ambient temperature ;
- \*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is  $R_{junction-case}$ , the thermal resistance of the TIM outside the package is  $R_{interface}(TIM)$  [°C/M], the thermal resistance with the heat sink is  $R_{heatsink-ambient}$  [°C/M], and the ambient temperature is  $T_{ambient}$  [°C/].
- \*Thermal resistances outside the package  $R_{interface\,(TIM)}$  and  $R_{heatsink-ambient}$  can be integrated into the thermal resistance  $R_{case-ambient}$  at this point. Thus, the following formula is also used:

 $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$ 

