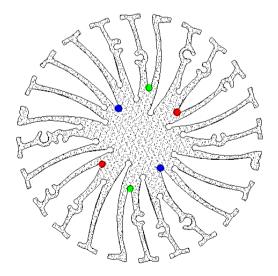




## EtraLED-LG-8550 LG Innotek Modular Passive Star Heat Sink Ф85mm


#### **Features VS Benefits**

- \* The EtraLED-LG-8550 LG Innotek Modular Passive Star LED Heat Sinks are specifically designed furninaires using the LG Innotek LED engines.
- \* Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- \* For spotlight and downlight designs from 1700 to 4,300 lumen.
- \* Thermal resistance range Rth 1.72°C/W.
- \* Modular design with mounting holes foreseen for direct mounting of LG Innotek COB series.
- \* Diameter 85.0mm standard height 50.0mm Other heights on request.
- \* Forged from highly conductive aluminum.

#### Zhaga LED engine and radiator assembly is a unified future international standardization

- \* Below you find an overview of LG Innotek COB's and LED modules which standard fit on the srar LED heat sinks.
- \* In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of srar LED heat sinks.





# LG Innotek LED Modules directly Mounting Options LG Innotek 7W&10W COB series.

LEMWM19480xxxxxx

LEMWM19490xxxxxx;

LEMWM19680xxxxxx

LEMWM19690xxxxxx;

With the Zhaga Book 3 holders for the green indicator marks.

TE Connectivity Holder: 2213382-1;

Without the holders for the blue indicator marks.

Direct mounting with machine screws M3x6.5mm.

#### LG Innotek 16W&21W COB series.

LEMWM24780xxxxxx;

LEMWM24790xxxxxx

LEMWM24980xxxxxx;

With the Zhaga Book 3 holders for the green indicator marks.

TE Connectivity Holder: 2213130-1

BJB Holder:47.319.2011.50

Without the holders for the red indicator marks.

Direct mounting with machine screws M3x6.5mm.





### **Mounting Options and Drawings & Dimensions**

Example: EtraLED-LG-8550-B-1,2

Example:EtraLED-LG-85 1 -

xample.EtraLED-LG-05

1 Height (mm)

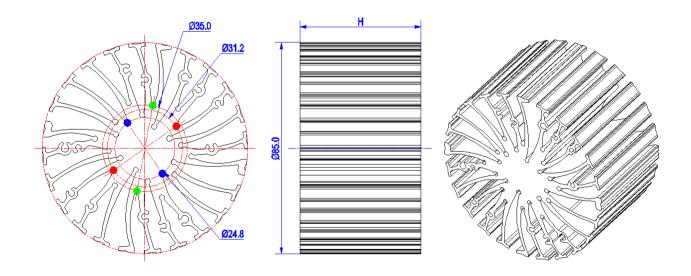
**Anodising Color** 

B-Black

C-Clear

Z-Custom

Mounting Options - see graphics for details Combinations available


Ex.order code - 12

means option 1 and 2 combined

#### **Notes:**

- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications without prior notice.

| MOUNTING<br>OPTION | Module type | Holder NO.                   | THREAD | THREAD<br>DEPTH | THREAD HOLE<br>DISTANCE           |
|--------------------|-------------|------------------------------|--------|-----------------|-----------------------------------|
| 1                  | 7W&10W COB  | /                            | M3     | 6.5mm           | 24.8mm/ 2-@180°                   |
| 2                  | 16W&21W COB | /                            | М3     | 6.5mm           | 31.2mm/ 2-@180°                   |
| 3                  |             | BJB Holder<br>47.319.2011.50 | МЗ     | 6.5mm           | 35.0mm/ 2-@180°<br>(Zhaga Book 3) |
|                    |             | TE Holder<br>2213130-1       |        |                 |                                   |
|                    | 7W&10W COB  | TE Holder<br>2213382-1       |        |                 |                                   |



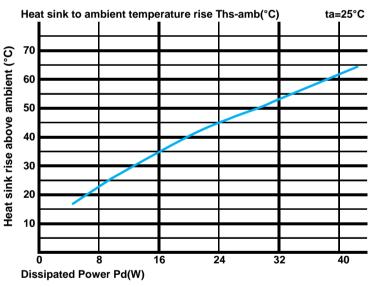




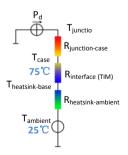

EtraLED

EtraLED-LG-8550 LG Innotek Modular Passive Star Heat Sink Ф85mm

#### The product deta table




| Model No.                      | EtraLED-LG-8550 |  |  |
|--------------------------------|-----------------|--|--|
| Heatsink Size                  | Ф85хH50mm       |  |  |
| Heatsink Material              | AL6063-T5       |  |  |
| Finish                         | Black Anodized  |  |  |
| Weight (g)                     | 286.0           |  |  |
| Dissipated power (Ths-amb,50℃) | 29.0 (W)        |  |  |
| Cooling surface area (mm²)     | 94366           |  |  |
| Thermal Resistance (Rhs-amb)   | 1.72 (°C/W)     |  |  |


#### The thermal data table

- \* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- \*To calculate the dissipated power please use the following formula:  $Pd = Pe \times (I \eta L)$ .
  - Pd Dissipated power ; Pe Electrical power ;  $\eta L = \text{Light effciency of the LED module};$

| Pd = Pe x<br>(1-ηL)    |      | Heat sink to ambient<br>thermal resistance<br>Rhs-amb (°C/W) | Heat sink to ambient<br>temperature rise<br>Ths-amb (°C) |  |
|------------------------|------|--------------------------------------------------------------|----------------------------------------------------------|--|
|                        |      | EtraLED-LG-8550                                              |                                                          |  |
| Dissipated Power Pd(W) | 8.0  | 2.88                                                         | 23.0                                                     |  |
|                        | 16.0 | 2.19                                                         | 35.0                                                     |  |
|                        | 24.0 | 1.88                                                         | 45.0                                                     |  |
|                        | 32.0 | 1.66                                                         | 53.0                                                     |  |
|                        | 40.0 | 1.53                                                         | 61.0                                                     |  |



- \*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).
- $\label{thm:module} \mbox{MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.}$
- $Either thermal\ grease, A\ thermal\ pad\ or\ a\ phase\ change\ thermal\ pad\ thickness\ 0.1-0.15 mm\ is\ recommended.$



- \*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula:  $\theta = (Ths Ta)/Pd$
- $\theta$  Thermal Resistance [°C/M]; Ths Heatsink temperature; Ta Ambient temperature;
- \*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is  $R_{junction-case}$ , the thermal resistance of the TIM outside the package is  $R_{interface}(TIM)$  ["C,M"], the thermal resistance with the heat sink is  $R_{heatsink-ambient}$  ["C,M"], and the ambient temperature is  $T_{ambient}$  ["C].
- \*Thermal resistances outside the package  $R_{interface (TIM)}$  and  $R_{heatsink-ambient}$  can be integrated into the thermal resistance  $R_{case-ambient}$  at this point. Thus, the following formula is also used:  $T_{iunction} = (R_{iunction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$

Tel:+86-769-39023131
Fax:+86-(020)28819702 ext:22122
Email:sales@mingfatech.com
Http://www.heatsinkled.com
Http://www.mingfatech.com

